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Abstract. Datacenters today waste CPU and memory, as re-
sources demanded by applications often fail to match the
resources available on machines. This leads to stranded re-
sources because one resource that runs out prevents placing
additional applications that could consume the other resources.
Unusable stranded resources result in reduced utilization of
servers, and wasted money and energy.

Quicksand is a new framework and runtime system that
unstrands resources by providing developers with familiar,
high-level abstractions (e.g., data structures, batch comput-
ing). Internally Quicksand decomposes them into resource
proclets, granular units that each primarily consume resources
of one type. Inspired by recent granular programming models,
Quicksand decouples consumption of resources as much as
possible. It splits, merges, and migrates resource proclets in
milliseconds, so it can use resources on any machine, even if
available only briefly.

Evaluation of our prototype with four applications shows
that Quicksand uses stranded resources effectively; that Quick-
sand reacts to changing resource availability and demand
within milliseconds, increasing utilization; and that porting
applications to Quicksand requires moderate effort.

1 Introduction
It is rarely the case that the resources demanded by appli-
cations (e.g., compute, memory, etc.) exactly match those
available on machines in a datacenter. This mismatch wastes
performance and capacity, because as one resource becomes a
bottleneck, others are left idle, a notion referred to as resource
stranding [8, 21, 23, 35, 40, 53]. In an ideal world, applica-
tions would use exactly the resources they need without being
constrained by their physical availability on each machine.

One idea that could help solve this problem is memory
disaggregation—the ability to allocate memory from a com-
mon pool that spans across machines. Unfortunately, mem-
ory disaggregation forces programmers to give up control of
whether they are accessing local or remote memory, which
sacrifices performance. This problem is severe enough that
cloud providers currently limit their use of memory disaggre-
gation to only the coldest memory pages [32].

Recent granular programming models, by contrast, give
the programmer control over where resources are consumed.
They decompose applications into granular units that bun-
dle together portions of compute and memory, referred to as
“proclets” [49], “components” [19], “actors” [39], and “func-
tions” [29]. Each unit resides entirely on a specific machine,

so it is guaranteed that state contained within it remains local.
Units communicate with each other via the network using
remote procedure calls (RPCs), so it is clear to programmers
when a memory access could be remote. In some systems,
units migrate across machines in response to resource pres-
sure [49]. But this fails to address resource stranding, as the
migratable units still couple different resources. Granular pro-
gramming is also often hard to adopt, as programmers must
manually decompose their programs into small units.

Quicksand is a new framework and runtime system that un-
strands resources by providing a more performant alternative
to disaggregation and offers familiar, high-level programming
interfaces to application developers. Quicksand takes inspira-
tion from the idea of granular programming, but crucially lets
applications allocate resources of different types largely in-
dependently across a rack of machines. Quicksand unstrands
resources through three key ideas.

First, Quicksand introduces resource proclets, a new ab-
straction that helps developers specify the use of different
resource types in a fine-grained and independent manner.
Resource proclets are categorized by the type of resource
they primarily use and their functionality: a compute pro-
clet handles threads of computation, while a memory proclet
manages data structures and heap data. Resource proclets
can be independently scheduled across machines and effi-
ciently communicate with each other via a low-latency, high-
bandwidth datacenter network (e.g., 400 GbE). Compute pro-
clets can efficiently access data from remote memory proclets
through prefetching, minimizing the performance impact of
cross-machine data access. This allows applications to exploit
stranded resources wherever they are available.

Second, Quicksand manages the size of resource proclets
so they can be efficiently migrated through the network to
rebalance resource use across machines. If a resource pro-
clet becomes too large, it impedes fast migration; and if it
becomes too small, communication and metadata overheads
will dominate. To address this issue, Quicksand splits and
merges resource proclets to keep them granular: splitting a
memory proclet partitions its state into two shards (e.g., by
key range of a hash table), and splitting a compute proclet
breaks up its work (e.g., loop iterations) into two parts. Merg-
ing does the reverse and combines resource proclets, so the
right number of proclets emerges dynamically.

Finally, Quicksand provides developers with familiar, high-
level libraries while internally managing fine-grained resource
allocation through resource proclets, freeing developers from
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having to reason about low-level resource management. De-
velopers use these libraries in the same way they use familiar
data structures and compute abstractions, such as C++ STL
containers and MapReduce-style parallel programming. The
libraries internally decompose these high-level constructs into
resource proclets. Consequently, Quicksand occupies a sweet
spot: its libraries control how applications are decomposed
and where memory will be accessed locally by leveraging
semantic information. This not only hides the complexity of
managing low-level granular primitives but also helps avoid
unnecessary and costly remote memory accesses.

To illustrate the power of Quicksand, consider a machine
learning pipeline, running on datacenter GPUs shared across
applications—a common scenario today [28, 57, 61]. The
pipeline preprocesses batches of raw images on CPUs in
stages (resizing, noise reduction, etc.) before training a model
on the GPUs. We want to keep GPUs fully utilized because
they are expensive [31, 37, 38], use CPU and memory wher-
ever available as needed, without having to overprovision
them for pre-processing stages. Quicksand’s resource proclets
enable the pipeline to use stranded resources (e.g., denoise
images in memory on another server). To keep GPUs satu-
rated, Quicksand splits and merges resource proclets to adapt
its CPU and memory use to changing GPU availability.

Quicksand targets rack-scale environments where machines
are typically connected with an overprovisioned network that
offers high full-bisectional bandwidth. We prototyped Quick-
sand, and ported four applications to it: an image processing
pipeline for machine learning, a latency-critical service from
the DeathStarBench suite [17], a data-intensive sorting tool,
and a serverless video encoding system from ExCamera [16].
Experiments show that Quicksand achieves 2–8× better per-
formance than Hermit [45], a state-of-the-art memory disag-
gregation system, and 2–3× better throughput than Nu [49],
a prior granular programming system. Additionally, Quick-
sand enables millisecond-scale fast reaction to changing load
and resource availability by splitting and merging proclets, in-
creasing utilization by 25%–60% compared to baselines that
necessitate overprovisioning. Application developers enjoy
these benefits with moderate programming effort.

Our prototype has some limitations. It implements only
compute and memory proclets, but we envision proclet sup-
port for other resource types (e.g., SSDs). Resource proclets
are also not inherently fault-tolerant, although existing tech-
niques for fault-tolerant granuluar computing apply [49].

2 Background and Motivation
2.1 Resource Stranding in Datacenters
Resource stranding occurs when hardware resources on ma-
chines are underutilized due to a mismatch between the re-
sources demanded by applications and those available, result-
ing in wasted capacity [8, 21, 35, 40, 53].

We investigate resource stranding by analyzing traces from
an Alibaba datacenter [23]. Alibaba colocates batch tasks

(a) At t = 500k seconds (load trough). (b) At t = 540k seconds (load peak).

Figure 1: Resource stranding in an Alibaba datacenter, shown by
red points (original), arises from overprovisioned resources to ac-
comodate load bursts of online services. Even with theoretically
maximal binpacking of batch tasks based on perfect future resource
predictions (blue points, idealized pack), stranding remains as batch
task demands mismatch with available machine resources.

with high-priority online services to increase utilization. The
workload has a strong diurnal pattern [23], so we analyze
a demand trough (at t = 500k seconds) and a demand peak
(at t = 540k seconds). Figure 1 shows a scatterplot of idle
CPU and memory, with each red point representing a specific
machine. Even at peak load, machines have an average of
56% idle CPU and 10% idle memory. These idle resources
exist because operators overprovision to handle uncertainty
about the resources the online services will consume, the first
source of stranded resources. This is especially critical for
memory, as running out of it leads to crashes. Even though
Alibaba already overcommits resources, this approach fails to
utilize all available resources, as the level of idle resources is
hard to predict and varies over time.

Resource stranding persists even in an idealized scenario
without resource overprovisioning. To illustrate this, we sim-
ulate an ideal (but impractical) setting where Alibaba can
perfectly predict resource needs and densely pack additional
batch tasks to maximize utilization. This simulation itera-
tively fills each machine with batch tasks that have resource
requirements and execution times equal to the averages of
existing batch jobs in the trace. This continues until no more
tasks can be added without exceeding the machine’s CPU or
memory capacity. This approach is unrealistic because it as-
sumes perfect knowledge of future resource usage, including
anticipating load spikes from online services.

Even in this hypothetical setting, some resources remain
idle, as shown by the blue points (idealized pack) in Figure
1. For instance, under peak load (t = 540k), an average of
14% idle CPU and 3% idle memory persist on machines.
These points, clustering along the axes, indicate machines
with surplus of one resource type but scarcity of the other.
This results from the mismatch between the CPU/memory
demand ratios of batch tasks and the availability ratios of those
resources on machines, another source of stranded resources.

Resource stranding is a widespread phenomenon: for in-
stance, Microsoft reports up to 30% stranded memory in
Azure [8], and Google’s datacenters see wasted compute re-
sources because best-effort jobs placed to fill spare compute
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encounter out-of-memory events [54].

2.2 Memory Disaggregation

Memory disaggregation can alleviate resource stranding by
exposing memory over the network, either from another server
or a shared memory pool. Disaggregation can be supported
at the kernel layer through paging (e.g., Infiniswap [22],
FastSwap [2], Hermit [45]) or at the bus layer through cache
coherence (e.g., GenZ [18], CXL [11, 34], LegoOS [51]). Bus-
level solutions require new hardware that has not yet been
deployed at the time of writing.

Memory disaggregation is appealing as it can be adopted
without application changes. However, it faces two major limi-
tations. First, while memory disaggregation facilitates pooling
memory across machines, it does not extend this capability to
CPUs. Hence, it fails to effectively utilize stranded CPU re-
sources. Second, the transparency of memory disaggregation
comes at a performance cost. Any memory access could be
local or remote, and remote accesses may introduce delays
that stall the CPU. This lack of awareness poses challenges
for code optimization, especially problematic when compute
intensity (i.e., CPU cycles per byte of data access) is low. For
example, Hermit [45] (a state-of-the-art memory disaggrega-
tion system) delivers only 9%–11% of the non-disaggregated
throughput for a web service application (§7.1).

2.3 Granular Computing Systems

Recent cloud programming trends suggest decomposing ap-
plications into granular units, such as “actors” in Ray [39],
“proclets” in Nu [49], and “components” in ServiceWeaver
[19]. This evolution aligns with the increasing adoption of
serverless and microservices paradigms in cloud development.
Granular programming can utilize stranded CPU and memory
by distributing small, granular units across machines. Unlike
transparent memory disaggregation, granular programming
explicitly defines unit boundaries; memory accessed within a
unit is local, and memory can be accessed remotely only de-
liberately through remote procedure calls. Hence, developers
can optimize their programs by structuring them to operate
on local memory when compute intensity is low and exploit
remote memory when it is high.

Among granular computing systems, Nu enables fast unit
migration across machines to achieve fungibility—the abil-
ity to use resources interchangeably across machines [49].
However, Nu has major limitations: it still bundles different
resources (such as CPU and memory) and fails to avoid re-
source stranding. Additionally, developing applications in Nu
is hard, as developers must manually decompose the applica-
tion into units and maintain their granularity. Developers may
compose units with incorrect granularity, or create initially-
granular units that become large over time (e.g., due to mem-
ory growth). Improper sizing results in slow migration and
imbalanced load, which impacts utilization and performance.

Machine 1

split

migrate

CPU
RAM

! CPU
RAM

Machine 2

merge

new proclets

memory proclet compute proclet hybrid proclet

!

placed where 
CPU available

placed where 
RAM available

Figure 2: Quicksand places resource proclets where they are avail-
able: e.g., memory proclets (blue) on machine 1 with available RAM;
and compute proclets (orange) on machine 2 with spare CPU. Quick-
sand splits, merges, and migrates resource proclets as they grow,
shrink, and as resource pressure develops.

3 Quicksand Overview
Quicksand integrates the principles of resource disaggregation
and granular computing in a new system. Quicksand reclaims
stranded resources by decoupling resources and aligning allo-
cation with actual use, while making it easy for application
developers to use resources wherever they are available.

To dissect the use of different resources, Quicksand in-
troduces resource proclets, granular abstractions categorized
based on functionality. A compute proclet manages a set
of computing threads, while a memory proclet manages
megabytes of heap data. Both types of proclet can be dy-
namically split and merged to ensure a granular size. Each
resource proclet functions as an independent unit, with Quick-
sand’s runtime scheduling and migrating it based on appli-
cation resource demands and availability. Resource proclets
efficiently communicate with each other via the datacenter
network (when remote) or a fast local data path (when local).

Quicksand places resource proclets on machines based on
resource availability. Proclet sizes may change over time. For
example, in Figure 2, the application is inserting data into
its memory proclets on the left machine, and removing data
from its memory proclets on the right machine. Quicksand
reacts by dynamically splitting and merging resource proclets
to maintain their granularity. In situations where a machine
becomes oversubscribed, such as when the left machine’s
CPU capacity is nearly depleted, Quicksand migrates com-
pute proclets to the right machine where additional CPUs
are available. Similarly, Quicksand migrates memory proclets
from machines nearing full to those with available space. Ad-
ditionally, Quicksand supports hybrid proclets (as depicted on
the left machine) for scenarios that require a combination of
CPU and RAM. These hybrid proclets are also migratable, but
resource proclets are easier for Quicksand to schedule because
they only require a substantial amount of one resource.

To simplify the use of resource proclets, Quicksand offers
developers familiar high-level programming abstractions, free-
ing them to focus on application logic without thinking about
decomposing applications, maintaining granularity, or manu-
ally managing resources. Applications link with Quicksand’s
libraries that provide high-level abstractions: data structures,
batch-parallel computations, and building blocks for stateless
and stateful services.
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1 void preprocessing_stage(qs::ShardedVector <Img>& inputs,
2 qs::ShardedQueue <Img>& outputs) {
3 auto f = [outputs](Img i) { outputs.push(preprocess(i)); };
4 auto scaling_policy = qs::batch::MinimizeQueue(outputs);
5 qs::batch::ForAll(inputs, f, scaling_policy);
6 }

Figure 3: An example of an ML training pipeline illustrating the
decomposition of the application into resource proclets using Quick-
sand’s high-level abstractions. It highlights the preprocessing stage,
where distributed workers process input images read (with prefetch-
ing) from a sharded vector and output to a sharded queue. Quick-
sand’s batch computing framework dynamically scales the number
of workers based on the output queue size to match the training
stage’s consumption rate.

Internally, these libraries provide their functionality by
orchestrating resource proclets through a common auto-
sharding layer, which dynamically splits and merges resource
proclets to keep them granular. This layer is built on resource
proclets to decouple state and compute, and leverages Quick-
sand’s runtime to promptly respond to changes in resource
demand and availability. Crucially, all of this resource man-
agement happens transparently to the application developer,
who interacts only with the high-level abstractions.

4 Design
We now discuss how developers create Quicksand applica-
tions using its high-level abstractions (§4.1); describe the
libraries in Quicksand that support these abstractions (§4.2);
explain Quicksand’s auto-sharding layer, which Quicksand li-
braries use to map high-level constructs into resource proclets
(§4.3), and finally explain resource proclets in depth (§4.4).
4.1 Quicksand Applications
Application developers write a Quicksand program without
worrying about how it is decomposed into resource proclets
or how resources are managed. Quicksand handles resource
allocation, scaling, and load balancing transparently, freeing
developers from manual resource management. It facilitates
this by offering three high-level abstractions with familiar
APIs: sharded data structures, batch computing, and stateless
and stateful services. These abstractions allow developers to
focus on application logic while Quicksand’s runtime effi-
ciently manages the underlying resources.

The sharded data structures provide in-memory distributed
data storage, while exposing APIs akin to C++ STL contain-
ers. For example, application developers use emplace_back
to insert data into a sharded vector and use iterators to traverse
the vector. The batch computing abstration enables distributed

computing over sharded data structures, exposing declarative
API functions such as Map, ForAll, Reduce, etc. The ser-
vice abstraction offers wrappers for building elastic stateless
and stateful services. Developers register a handler function
for stateless services, or a class that implements application-
specific stateful logic for stateful ones.

To showcase Quicksand’s high-level abstractions, let’s ex-
amine an ML training pipeline that runs on shared datacenter
GPUs, which often experience changing availability [28, 57,
61]. As shown in Figure 3, the pipeline has three stages:
loading, which loads input images from storage into memory
for training; preprocessing, which preprocesses the loaded
images; and training, where GPUs train a model on the pre-
processed images.

Since input images may consume significant memory, the
loading stage utilizes Quicksand’s ShardedVector to effi-
ciently distribute images across machines using sharding,
where each shard is associated with a memory proclet. Dur-
ing preprocessing, the pipeline leverages Quicksand’s batch
computing abstraction, deploying compute proclets across
machines to preprocess the images in parallel. Quicksand
might schedule compute and memory proclets into different
machines to combine their available resources, and it employs
transparent prefetching of the vector to efficiently access re-
mote memory. The pipeline then pushes the preprocessing
outputs into a sharded queue for consumption by GPUs. This
design might increase network traffic between stages, but it al-
lows Quicksand to decouple compute and memory resources,
resulting in better resource utilization and scalability.

If too few compute proclets are provisioned, the GPU can
be starved for data, resulting in underutilization of expensive
GPU resources. Conversely, provisioning too many compute
proclets wastes CPU resources and increases memory usage,
as the queue will grow if images are preprocessed faster than
the GPU can consume them. To strike this balance, Quicksand
dynamically scales the number of compute proclets in the
preprocessing stage based on the queue length, aiming to
keep the queue shallow while ensuring image production
matches the GPU’s consumption rate (details in §4.2).

Implementing the core logic of the preprocessing stage
requires only a few lines of code (Figure 3). This code has no
mention of resource proclets or sharding, the developer does
not need to think about resource decomposition.
4.2 Quicksand Libraries
Quicksand offers high-level abstractions via a collection of
libraries that applications link to. Each library is dedicated
to a specific abstraction, mapping high-level constructs into
granular resource proclets through its default policies and
mechanisms for splitting and merging. The auto-sharding
layer (§4.3) initiates the actual splitting and merging, call-
ing upon these policies and mechanisms accordingly. These
libraries abstract away the complexities of resource proclet
management, allowing developers to focus on application
logic rather than resource allocation and decomposition.
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void emplace_back(T value)
T& at(size_t index)
size_t size()
void seal()

- Seals the vector, making it immutable and iterate-able.
void unseal()

- Unseals the vector, allowing modifications.
const_iterator cbegin(), cend()

- Provides read-only iteration with prefetching.

Figure 4: Quicksand’s sharded data structure API (e.g., a subset of
the ShardedVector shown above) mirrors C++ STL interface, with
additional methods to support efficient iteration with prefetching.

void ForAll(ShardedDS& input, F f, Policy p)
- Applies f to all items of a sharded data structure in parallel.

ShardedDS Map(ShardedDS& input, F f, Policy p)
- Transforms input items with f in parallel.

T Reduce(ShardedDS& input, F f, T init, Policy p)
- Reduces input items with f and init in parallel.

Figure 5: A subset of Quicksand’s batch computing API for parallel
computation over sharded data structures, with support for custom
scaling policies via an optional argument.

The sharded data structure library offers general-
purpose data structures, including all common C++ STL con-
tainer types, with an interface similar to the C++ STL. For
instance, Figure 4 shows a subset of the ShardedVector API.

Leveraging Quicksand’s auto-sharding layer, the library
distributes data structures’ contents across memory proclets
based on a data structure-specific sharding key. For instance,
the ShardedVector shards over vector indices, such that
each memory proclet holds data for a contiguous range; a
ShardedMap shards into ranges of the map’s key space, with
each memory proclet managing key-value pairs for a desig-
nated key range. The library supports iterators with prefetch-
ing for efficient traversal.

The memory proclets of a data structure enforce lower and
upper bounds on their heap sizes. Upon element insertion, the
auto-sharding layer checks if the shard becomes too large (or
too small on element removal). In such cases, the library splits
the memory proclet or merges it with a neighboring one.

The mechanisms to split and merge are data structure-
specific. For example, the ShardedQueue in Figure 3 only
supports insertion at the back (push), so only the last memory
proclet can grow. Consequently, a split always occurs at the
tail proclet, generating a new, empty memory proclet for sub-
sequent insertions. By contrast, a sharded map is partitioned
by key range and any of its proclets can grow. When a proclet
goes above its size threshold, it splits its key range in half and
selectively moves key-value pairs to the new proclet.

The batch computing library provides common parallel
batch computing operators (e.g., ForAll, Map, Reduce) over
input and output stored in sharded data structures, see Figure
5. The computations are internally performed by compute
proclets that split and merge via the auto-sharding layer to
dynamically adjust parallelism based on available resources
or user-specified policies.

StatelessServ Register(F handler)
- Registers a stateless service.

StatefulServ<ID> Register<ID>(F handler, State& s)
- Registers a stateful service with a client ID type and state.

void Invoke(StatelessServ& s, Args args)
- Invokes a stateless service with arguments.

void Invoke(StatefulServ<ID>& s, ID id, Args args)
- Invokes a stateful service with a client ID and arguments.

Figure 6: Quicksand’s service library API for registering and invok-
ing stateless and stateful services.

Recall the ML training example in Figure 3. The program
uses the ForAll function to parallelize image preprocessing.
Initially, it creates a single compute proclet, responsible for
processing the entire range of the input ShardedVector by
applying f to each element. When there are idle CPU cores
in the cluster, the library splits the input range of the com-
pute proclet, creating a new compute proclet to handle the
other half. By iteratively splitting compute proclets, the li-
brary can utilize all available CPUs in the cluster. The batch
computing library supports custom scaling policies, such as
the MinimizeQueue policy in Figure 3. Every two millisec-
onds, it checks the queue length: if below a small threshold,
it adds compute proclets. Otherwise, it adjusts the number
of compute proclets by a proportional factor of the queue’s
shrinking rate, aligning production with consumption speed.

The completion time of compute proclets may vary, due to
data skew or slow machines. Upon the completion of a fast
compute proclet, the auto-sharding layer detects an idle core
and reactively subdivides an ongoing proclet. This process
effectively automates the mitigation of stragglers.

The service library facilitates the creation of elastic low-
latency services, whether stateless or stateful, capable of dy-
namically responding to fluctuations in load. Figure 6 shows
its API for application developers.

The stateless service uses compute proclets through the
auto-sharding layer. Each invocation request from clients
implicitly has a random 64-bit number, which Quicksand
internally uses as the sharding key in the auto-sharding layer
to evenly distribute the requests among compute proclets.

The stateful service uses pairs of compute and memory pro-
clets managed by the auto-sharding layer. Each client request
explicitly comes with a per-client or per-session identifier,
which Quicksand uses as the sharding key to implement sticky
routing through the auto-sharding layer.

Internally, both stateless and stateful services parallelize
client interactions to scale out by dispatching requests to
different compute proclets based on sharding keys.

Both service types adopt the same policy: Quicksand mon-
itors the CPU utilization of each compute proclet at two-
millisecond intervals. If the average usage exceeds one core,
the library splits it into two, enabling services to scale up
in response to load increase. Conversely, a service winding
down from a load spike may have compute proclets that under-
utilize CPU resources; the library reactively merges proclets,
adapting a service’s resources to its current load. This two-
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1 class VectorShard <T> : std::vector<T> {
2 using Key = size_t; using Val = T;
3 std::pair<Key, VectorShard <T>> Split() { /∗...∗/ }
4 void Merge(VectorShard <T>& other) { /∗...∗/ }
5 };
6 using MyShardedVector <T> = qs::ds::ShardedDS <VectorShard <T>>;

Figure 7: A user can implement their own sharded vector by cre-
ating a wrapper (VectorShard) around std::vector, specifying
the types of the sharding key and value, and implementing the
split/merge functionality for the vector data.

millisecond interval strikes a balance between reactivity and
stability. A shorter interval could lead to frequent, unnecessary
adjustments due to transient load spikes, while a longer inter-
val might delay responses to real workload changes. When
splitting and merging a stateless service’s proclets, the library
splits or combines the key ranges they are responsible for. For
a stateful service, the application developer provides Split
and Merge functions over the service’s internal state stored in
proclets.
4.2.1 Extensibility
While Quicksand’s libraries cover common use cases for
cloud applications, users (i.e., developers) can extend them
for additional functionality. For instance, they could augment
the sharded data structure library with new data structures,
or the batch computing library with new operators (e.g., flat-
map, joins, or streaming-based transformations). The service
library likely needs no extension as its stateless and stateful
APIs cover all intended use cases, with applications supplying
the business logic.

The interface of Quicksand libraries facilitates this extensi-
bility. For example, a user can implement their own version
of sharded vector in a few lines of code, as shown in Figure
7. The user wraps std::vector, adding type definitions for
the sharding key and value, and provides implementations for
Split and Merge, which split a vector shard’s elements and
combine two vectors’ elements, respectively. Then, the user
defines a new, application-facing type (MyShardedVector)
by aliasing to the ShardedDS class provided by Quicksand’s
auto-sharding layer, parameterized with the shard implemen-
tation (VectorShard).
4.3 The Auto-Sharding Layer
Quicksand’s libraries use the auto-sharding layer to shard
high-level programming constructs into resource proclets and
maintain their granularity. The auto-sharding layer accom-
plishes three tasks: (1) it keeps track of how sharding keys
correspond to shards encapsulated within resource proclets,
(2) it directs the execution of a given function to the appro-
priate shard, and (3) it splits or merges shards based on a
user-supplied policy using the shard-specific split or merge
functionality.

The auto-sharding layer is implemented by Quicksand’s
AutoSharder class, which requires a sharding key type,
a proclet type to be sharded, and two policy functions
ShouldSplit and ShouldMerge. These functions assess

whether a shard’s current state calls for splitting or merg-
ing. In turn, AutoSharder provides a Route method to direct
a function invocation to the right shard, given a sharding key,
a hint, and the function lambda. The hint indicates whether
the shard might need merging or splitting.

Internally, AutoSharder keeps a map from sharding key
ranges to resource proclets. This map is centrally stored in
a mapping proclet, but each AutoSharder instance caches
it to reduce load. The Route method checks the local map
and dispatches the lambda to the appropriate shard. If the
local cache is stale, the shard rejects the dispatch, in which
case Route consults the central map and retries. After execut-
ing the lambda, the Route method uses the hint in combina-
tion with ShouldSplit or ShouldMerge to possibly split or
merge the proclet shard using the shard-specific functions.

As an example, the sharded vector in Figure 7 can be built
with AutoSharder using the vector index as the sharding key
and memory proclet as the proclet type. The ShouldSplit
and ShouldMerge functions check that the shard’s heap size
falls within a desired range. The sharded vector’s push_back
method routes execution of std::vector’s push_back to
the last shard, while the at method routes execution to the
appropriate shard based on the index key.
4.4 Resource Proclets
Quicksand defines three resource proclet types. The intent is
that each resource proclet type primarily consumes one type
of resource (compute, memory, etc). The actual definitions of
resource proclets are based on their functionality: a compute
proclet executes computations through a lambda API, while a
memory proclet stores state through a read/write API. §7.4.1
shows that these abstractions in practice indeed meet the intent
of using a single resource: compute proclets have a CPU-to-
memory ratio greater than 0.1 core per MiB, so they mainly
consume CPU; and memory proclets have a ratio of less
than 0.001 core per MiB, so they mainly consume memory.
Quicksand’s runtime monitors the resource usage of resource
proclets, issuing warnings if usage exceeds the thresholds.
Quicksand also defines a hybrid proclet that provides both
compute and memory functionality to support colocation of
compute and memory when necessary for performance; it has
a more balanced CPU-to-memory ratio (between 0.001–0.1
core per MiB). Appendix §A.2 shows the full API.
4.4.1 Compute Proclet
Compute proclets are conceptually akin to computing threads;
developers use them to implement an application’s computa-
tional logic. A compute proclet still consumes some memory
to hold thread stacks and a small heap for temporary data. To
create a compute proclet, Quicksand provides two functions:
MakeCompProc(Fn) simply executes a given function, and
MakeCompProc(Range, Fn) runs the function over a spec-
ified range of data. The range variant is useful for splitting
(and merging similarly): upon splitting a compute proclet, the
range is split into half, and the new compute proclet takes over
the other half. Like popular serverless platforms, the compute
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proclet API enables developers to execute computations with-
out thinking about server infrastructure or locality. Unlike
serverless functions, compute proclets can split, merge, and
migrate during their execution, enabling Quicksand applica-
tions to utilize idle CPUs and react to compute pressure.

Compute proclets support both ephemeral and long-running
computations. A compute proclet can create more compute
proclets and wait for their completion. However, a compute
proclet cannot directly access another compute proclet’s mem-
ory. Instead, compute proclets communicate with memory
proclets (via the network or the local data path) to share com-
putation results, which we discuss next.
4.4.2 Memory Proclet
Memory proclets are conceptually akin to small heap regions
(a few MBs); developers use them to keep application data. A
memory proclet may consume a small amount of CPU to read
and write data. Quicksand offers the MakeMemProclet func-
tion to create a memory proclet encapsulating a user-defined
shard. This function returns a smart pointer to the memory
proclet that exposes the Read and Write functions. Quick-
sand’s libraries use these functions (and their asynchronous
counterparts) to operate on the memory proclet’s contents. As
memory proclets can be remote, Read returns a copy of the
indexed element.

Quicksand supports sealing memory proclets to make them
read-only. Sealed memory proclets allow for efficient runtime
prefetching, as there is no risk of reading stale data even with
concurrent accesses. When a memory proclet is sealed and
code invokes Iterate on it, the Quicksand runtime leverages
the semantic information provided by the high-level abstrac-
tions to predict access patterns. It then prefetches subsequent
elements in the background, effectively hiding access latency
for remote data. Finally, memory proclet supports splitting
and merging by invoking the Split and Merge functions of
the encapsulating shard.
4.4.3 Hybrid Proclet
Hybrid proclets colocate a computing thread with heap data,
providing compute-data locality for applications with low
compute intensity. However, a hybrid proclet offers the least
placement flexibility, as it may consume both nontrivial
amounts of CPU and memory resources. Consequently, Quick-
sand discourages the use of hybrid proclets via constrained
APIs. A hybrid proclet cannot be created directly; it can be
realized only by promoting an existing memory proclet us-
ing an explicit Hybridize call. Once hybridized, it provides
the Offload method to execute a C++ lambda within the
hybrid proclet (computation shipping). A hybrid proclet can
be demoted to a memory proclet by calling Dehybridize.

5 Implementation
Our Quicksand prototype has 10k lines of C++ code, which
implement resource proclets atop Nu [49].

We co-designed the Quicksand runtime with resource pro-
clets, leveraging information from the thread scheduler and

slab memory allocator to precisely monitor per-proclet re-
source usage, with minimal overhead (<1%). Each machine’s
runtime periodically reports resource usage and idle resources
to Quicksand’s centralized controller, facilitating centralized
decision-making on proclet placement and migration.

To safely and efficiently support resource proclet splitting
and merging, we employ RCU locks [36]. Proclet access op-
erations acquire the RCU reader lock, while splitting/merging
events acquire the writer lock. This design minimizes the
impact on application performance by shifting most synchro-
nization overheads to infrequent splitting and merging events.

Initiation of splitting and merging, managed by the auto-
sharding layer (§4.3), involves updating the sharding mapping
stored in the centralized mapping proclet. Stale clients effi-
ciently discover updates by fetching the latest mapping from
an append-only log at the centralized proclet. This log sequen-
tially records all changes made to the mapping.

We optimized our data structure library (§4.2) to minimize
network overhead. For instance, our sharded data structures of-
fer batching, grouping mutations (e.g., push_back operations
in ShardedVector) locally before flushing to memory pro-
clets using large network packets. This significantly improves
the performance of small-object operations. In addition, the
library supports concurrent flushing, adapting parallelism to
align with the application’s production rate. Similarly, it sup-
ports concurrent prefetching for iterating over data structures.

6 Application Case Studies
We now describe our experience implementing and porting
four applications for Quicksand. They cover batch and latency-
critical applications, a range of compute intensities, mem-
ory usage, and resource proclet usage (Figure 8). Thanks to
Quicksand’s high-level abstractions, all applications required
moderate programming effort, in terms of lines of code and
development time; porting existing applications (social net-
work and video encoding) involved modifying 3%–5% of the
code and building new applications (ML training and sorting)
required adding about 20 Quicksand-related lines of code.
Figure 3 illustrates the decomposition of the ML training ap-
plication, while Figure 9 presents the others. Sorting is the
only application that uses hybrid proclets.

ML training pipeline. We implemented the compute-
intensive batch application in Figure 3 as an OpenCV-based
pipeline with a data loading stage, a CPU-based preprocess-
ing stage, and a GPU-based training stage. We use images
from the ImageNet ILSVRC2012 dataset [50] as our train-
ing data (35.3 GiB). Our implementation has 300 LoC, of
which 20 LoC relate to Quicksand. We leverage Quicksand’s
ShardedVector to store input images, ShardedQueue for
preprocessed images, and the batch computing library for par-
allel preprocessing. The batch computing abstraction dynami-
cally scales workers based on the output queue size, matching
the training stage’s consumption rate. Since our testbed lacks
GPUs, we simulate the training stage by consuming images
at a rate of 0.2 milliseconds per image, based on the reported
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Apps Type Dataset Comp.
Intensity

Mem.
(GiB)

Abstractions
Used

# resource proclets:
comp.+mem.+hybrid

QS-related LoC/
Total LoC

Development
Time (days)

ML
Training Batch

ILSVRC
2012 [50] High 35.3

Sharded{Queue, Vector}
BatchComputing

158 + 1,340 + 0 21 / 307 1

Social
Network

Latency-
critical

soc-
delicious [13] Low 33.4

ShardedMap
StatelessService

91 + 19,034 + 0 98 / 1800 2

Sorting Batch
TritonSort

[46] Low 112.0
ShardedPartitions
BatchComputing

182 + 4,108 + 4,108 22 / 98 1

Video
Encoding Batch

bunny_480p
[9] High 17.5

ShardedVector
BatchComputing

168 + 625 + 0 203 / 6083 4

Figure 8: Our four case study applications leverage (different) high-level abstractions provided by Quicksand, resulting in moderate porting
and development efforts. Their memory usage and the number of resource proclets vary over time, with peak values reported.
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Figure 9: Quicksand’s high-level abtractions automatically decompose applications into resource proclets and maintain their granular sizes.

rate of image classification models [14, 44].
Social Network. We ported the SocialNetwork application

from DeathStarBench [17]. This is a latency-critical, Twitter-
like web service, originally built using twelve microservices.
It has a low compute intensity and uses 33.4 GiB memory. The
original implementation employs an NGINX web frontend
for processing client requests, which accesses user data stored
in Redis. This architecture naturally separates CPU-intensive
(frontend) and memory-intensive (data store) components,
aligning well with Quicksand’s model of resource decoupling.
Consequently, it is straightforward to port this application to
Quicksand, and gain benefits such as resource fungibility and
elasticity that are not present in the original implementation.

Our port structures the application into a stateless front-
end service layer and several stateful key-value stores, using
Quicksand’s StatelessService and ShardedMap abstrac-
tions. The stateless service wraps all the business logic orig-
inally handled by the microservices, while the sharded map
stores user data originally handled by Redis. Our port has
1.8k LoC compared to the 6.8k LoC in the original applica-
tion. This reduction is primarily due to the elimination of
boilerplate code required for interacting with frameworks like
gRPC, Redis, etc., which were used in the original implemen-
tation. In our port, 98 LoC are Quicksand-related, while the
remaining code is application logic. By contrast, an already-
granular implementation with Nu [49] (2.2k LoC) required
developers to manually implement substantial functionality
(such as decomposition, shard resolution, etc.) in the appli-
cation code. Quicksand provides this functionality out-of-
the-box and adds extra functionality (such as load-adaptive
dynamic sharding) despite reducing the code size by 20%.

Sorting. We built an in-memory distributed sorting tool
that sorts 400 million 100B key-value pairs, similar to Tri-

tonSort [46]. This is a batch application with low compute
intensity and uses 112 GiB of memory. Our implementation
has 307 LoC, of which 21 LoC are Quicksand-related. As
depicted in Figure 9, our implementation uses Quicksand’s
batch computing library and custom data structures. It has
two stages: (i) shuffling input data into key-based ranges;
(ii) parallel sorting of these ranges. The first stage uses the
batch computing library to concurrently read input data from
a ShardedVector (with prefetching) and insert them into a
ShardedPartitions data structure. This data structure uses
the input as the sharding key and maintains an unordered
vector of key-value pairs within each shard. Upon splitting, it
uses the quickselect algorithm [25] to evenly partition these
pairs into two ranges. After shuffling, sorting each partition
(i.e., the data of each shard) produces the final result. Given
the low compute intensity of sorting, we improve locality
by promoting memory proclets into hybrid proclets for fast
in-place sorting, rather than sorting using compute proclets.

Video encoding. We ported the distributed video encoder
from ExCamera [16], a batch application with high com-
pute intensity designed for serverless platforms like AWS
Lambda [6]. ExCamera has two stages: 1) a parallel encoding
stage that encodes all video chunks, and 2) a sequential rebas-
ing stage that stitches all encoded chunks together in sequence.
Since ExCamera’s code is no longer maintained or runnable,
we created a faithful baseline implementation. Our port, as
shown in Figure 9, utilizes Quicksand’s ShardedVector and
batch computing abstractions. It initially loads video chunks
from the bunny_480p dataset (with a memory footprint of
17.5 GiB) into the input ShardedVector. It then uses the
batch computing library to read chunks in parallel from the
input vector, encodes them, and writes the outputs into an-
other ShardedVector for encoded chunks. Finally, a single
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compute proclet rebases all chunks from the encoded vector
into the final encoded video. The port changes 203 LoC of
the application’s total 6k LoC.

7 Evaluation
Our evaluation focuses on answering following questions:

1. Does Quicksand unstrand resources better than existing
disaggregation and granular programming systems (§7.1)?

2. How does Quicksand respond to changes in resource
availability (§7.2) and resource demand (§7.3)?

3. Does the resource proclet abstraction effectively separate
the use of different resources (§7.4.1)?

4. Does Quicksand’s rapid scaling and fine granularity
improve utilization and performance (§7.4.2 and §7.4.3)?

Setup. Our testbed has eight machines, each equipped with
an Intel Xeon E5-2680 v4 CPU and 64 GB memory, con-
nected by a 100 GbE network, running Linux kernel v5.10.
One machine hosts Quicksand’s cluster controller. For the
ML pipeline experiments, we use one machine as the GPU
server and the remaining six machines as the CPU servers
(for preprocessing). For the social network experiments, one
machine serves as the load generator and the remaining six
machines as servers; and for the sorting and video encoding
experiments, all seven machines run the application.
7.1 Using Stranded Resources
We first investigate how Quicksand performs on machines
with stranded resources (e.g., servers with ample free CPU
but little memory or vice-versa). We use the ML training
pipeline, which has high compute intensity, and the social
network application, whose compute intensity is low. To com-
prehensively evaluate Quicksand’s ability to handle various
cases of stranded resources, we divide the same amount of
total resources between machines in different ways (Figure
10). In the CPU-unbalanced setup, three machines have few
available CPU cores, but memory is equally distributed; in the
memory-unbalanced setup, three machines have little mem-
ory, but available cores are equally distributed; in the both-
unbalanced setup, three machines have few CPU cores and
plenty of memory, while others have plenty of available CPU
cores, but little available memory.

We compare Quicksand to two existing systems: Her-
mit [45], a state-of-the-art memory disaggregation framework,
and Nu [49], a recent granular programming framework. Her-
mit is not designed to scale past the CPU resources of one
machine (§2.2). To overcome this limitation, we give Hermit
an advantage by running one Hermit instance per machine
and evenly distributing tasks among them. This requires extra
programming effort that counteracts Hermit’s transparency
promise. We compare the performance of all systems on the
unbalanced setups to an ideal, balanced setup, where the ag-
gregate resources are the same but distributed over only three
machines, each with ample CPU and memory. Since Hermit
is designed for memory disaggregation, we also evaluate it
on a memory-disaggregated setup, which partitions the same

Machine 1-3 Machine 4-6
# CPUs RAM (GiB) # CPUs RAM (GiB)

Ideal 26 12 N/A N/A

CPU-unbalanced 6 6 20 6
Mem-unbalanced 13 1 13 11
Both-unbalanced 6 11 20 1

Mem-disaggregated 26 1 0 11

Figure 10: To create resource stranding, we partition resources
(78 CPUs, 36 GiB memory) in different ways: CPU-unbalanced,
memory-unbalanced, and both-unbalanced. We also consider a
memory-disaggregated setup and an ideal balanced setup.

Figure 11: The ML pipeline on Quicksand combines resources from
different machines, achieving throughput similar to the ideal scenario.
Quicksand has 1.2–2× higher throughput than Hermit in unbalanced
setups, as Hermit cannot use stranded CPU resources and suffers
from kernel paging overheads when combining memory resources;
and Quicksand’s throughput exceeds Nu’s by 2–4× in unbalanced
setups as Nu always bundles CPU and memory resources.

amount of total resources into three CPU servers with minimal
memory and three pure memory servers.

A good result for Quicksand would show performance sim-
ilar to Hermit and Nu on the ideal (balanced) setup, and bet-
ter performance than these systems in the unbalanced se-
tups. With high compute intensity, a strong result would show
Quicksand coming close to the ideal setup’s performance;
while when compute intensity is low, resource proclet net-
work’s overheads dominate, and a good result would show
limited performance loss compared to the ideal setup.

Figure 11 shows the results for the compute-intensive ML
pipeline. In the ideal setup, each machine uses all 26 cores and
≈11 GiB memory, achieving throughput of 26k images/sec.
In unbalanced setups, Quicksand achieves similar through-
put despite the resource imbalance1, thanks to its effective
semantic-based data prefetching mechanism. Hermit and Nu
achieve 92% of the throughput of Quicksand in the ideal
setup—the overhead arises because they spawn a large num-
ber of compute threads, causing lower cache locality and extra
context switches. By contrast, Quicksand splits and merges
compute proclets to adapt to the available CPU resources. In
the mem-unbalanced setup, Hermit combines stranded mem-
ory resources across machines through paging, but paging is
expensive and limits Hermit to 83% of Quicksand’s through-
put. Hermit cannot combine stranded CPU resources, as its
modified baseline evenly distributes tasks; Quicksand there-
fore achieves 2× higher throughput in the CPU-unbalanced

1In fact, Quicksand’s throughput in unbalanced setups is up to 10% above
the ideal setup; this is an artifact of lighter last-level cache contention.
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Figure 12: The social network application’s low compute intensity
poses a challenge in using stranded resources. Yet, Quicksand attains
40%–84% of the ideal throughput in severely imbalanced setups,
outperforming Hermit, which achieves only 4%—11% due to poor
locality from paging. Nu matches Quicksand’s performance as it
allows developers to control memory placement to optimize locality.

Figure 13: Quicksand quickly adapts the ML pipeline’s prepro-
cessing rate to the changing GPU availability by scaling the num-
ber of compute proclets. Compared to two Nu-based baselines that
statically provision CPU resources, Quicksand achieves either 25%
higher GPU utilization or uses 25% fewer CPU cores.

and both-unbalanced setups. Nu cannot combine stranded
CPU and memory, as its proclets bundle different types of
resources; Quicksand therefore outperforms Nu by 2–4×.

Figure 12 shows the results of the social network applica-
tion with low compute intensity, where it is challenging to
hide the overhead of accessing data on remote machines. In
the ideal setup, each machine uses all 26 cores and ≈11 GiB
memory, and all three systems achieve similar throughput
(810k ops/sec). Quicksand’s performance is slightly lower
than the baselines as its auto-sharding layer adds a ≈6%
overhead. All systems also achieve similar throughput in the
CPU-unbalanced setup because the application has a low com-
pute intensity. When there is memory imbalance (memory-
unbalanced and both-unbalanced), it is crucial to optimize
data locality to achieve good performance. Hermit’s transpar-
ent paging prevents programmer control over memory place-
ment and results in poor locality: Hermit achieves 9–11% of
the ideal throughput in unbalanced setups (4–8× worse than
Quicksand), and merely 4% in the memory-disaggregated
setup. By contrast, Nu allows programmers to control place-
ment to optimize locality and achieves 40–84% of the ideal
throughput, similar to Quicksand.

These results demonstrate that Quicksand successfully uses
stranded resources, and matches or outperforms state-of-the-
art disaggregation and granular computing frameworks.

Number of
shards

Avg. shard
size (MiB)

Avg. mem.
usage (GiB)

Quicksand 1,086–19,034 1.7 17.25
Static-small-table 1,053 14.0 14.75
Static-large-table 19,928 1.4 27.5

Figure 14: In the social network application, Quicksand dynami-
cally splits and merges memory procets of the hash table, ensuring
granularity. This allows Quicksand to mitigate memory pressure
(gray region) with rapid proclet migration, resulting in stable low
tail latency. The Nu-based static-small-table baseline statically pro-
visions a small hash table, resulting in larger shards that are slower
to migrate, thereby experiencing disruptions. The static-large-table
baseline, by contrast, statically overprovisions a large hash table,
achieving low latency but using 37% more memory than Quicksand.

Figure 15: In the video encoding application, Quicksand adapts to
the changing parallelism of the application by reducing the number
of compute proclets, saving 60% CPU compared to ExCamera.

7.2 Adapting to Changing Resource Availability
We now study how well Quicksand reacts to changes in the
availability of scarce resources.
7.2.1 Reacting to Changing GPU Availability
In this experiment, we vary the number of GPUs available
for the training stage of the ML pipeline between five and ten
every 200ms, mimicking the burstiness reported by Park et
al. [44]. We measure the amount of CPU cores allocated by
Quicksand for the pre-processing stage. We compare Quick-
sand to two baselines that statically provision CPUs, imple-
mented using Nu: static-high-GPU provisions CPUs for the
peak number of available GPUs (ten), while static-low-GPU
provisions for the minimum number (five). A good result for
Quicksand would demonstrate it saturating available GPUs,
comparable to static-high-GPU, without wasting CPUs.

Figure 13 shows that Quicksand rapidly scales compute
proclets by splitting or merging them to match changing GPU
availability. As a result, Quicksand achieves GPU saturation,
while static-low-GPU achieves only 75% average GPU uti-
lization. Quicksand consumes an average of 105 cores, but
static-high-GPU consumes 140 cores. This shows that Quick-
sand effectively adapts to rapid changes in GPU availability.
7.2.2 Reacting to Memory Pressure
We now investigate if Quicksand can quickly react to mem-
ory pressure to avoid performance disruption by splitting,
merging, and migrating resource proclets across machines.
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(a) Normal distribution. (b) Uniform distribution.

Figure 16: Sorting normally-distributed data, Quicksand achieves
higher throughput than the static baseline because it avoid stragglers
through dynamic splitting. For both normally and uniformly dis-
tributed data, Quicksand achieves higher throughput than the sample
baseline because it avoids the extra sampling phase.

We run the latency-critical social network application on
all available machines with constant load (1.5 MOPS), and
launch a memory antagonist that keeps allocating new pages
at one machine, creating memory pressure. The memory us-
age in the social network application mainly comes from its
sharded hash table, so the experiment focuses on this data
structure. We compare Quicksand to two baseline systems
that statically provision the number of shards, implemented
using Nu: static-small-table provisions for a small hash table
with a few shards; while static-large-table baseline overpro-
visions for a large hash table with many shards. A good result
for Quicksand would show it achieving constant, low latency
despite memory pressure and consuming less memory than
the static-large-table baseline.

Figure 14 shows the results. Between 0–30 seconds, there
is no memory pressure, so all setups achieve low and stable
99th percentile latency (≈0.3 ms). The memory antagonist
starts at t=30 seconds and all setups react by migrating shards
during the gray region. Both Quicksand and static-large-table
experience only a small latency increase as they can quickly
migrate their small (<2 MiB) shards. However, Quicksand
uses 37% less average memory than static-large-table, as it
rightsizes the number of shards through dynamic splitting and
merging. Static-small-table, by contrast, ends up with a few
large shards (≈14 MiB) that are slow to migrate, and therefore
experiences latency spikes. After resolving memory pressure
through migration, the latency returns to normal. These results
show that Quicksand effectively mitigates memory pressure
while keeping good tail latency and memory usage.
7.3 Adapting to Changing Resource Demand
We now study if Quicksand adapts to changing resource de-
mand caused by phased program behavior or load imbalance.
7.3.1 Phased Application Behavior
The video encoding application has multiple concurrent stages
that encode chunks, followed by a serial stage that stitches
together encoded chunks. We run the ExCamera[6,16] encod-
ing scheme2 and compare our performance to the baseline.
A good result for Quicksand would show its resource usage

2In ExCamera’s notation, this means encoding chunks of 6 frames in
parallel, and then combining them in strings of 16 chunks [16].

(a) Normal distribution. (b) Uniform distribution.

Figure 17: The CDF of shard sizes in the sort benchmark. Quicksand
balances shard sizes well by dynamically splitting resource proclets.
The sample baseline also balances shard sizes but requires an extra
phase. The static baseline experiences serious load imbalance with a
normal distribution of input due to its static partitioning.

matching the application’s available parallelism.
Figure 15 shows the results. The concurrent encoding

stages in the beginning (0–0.8s) have high parallelism, and
both ExCamera and Quicksand use 15 CPUs. Quicksand’s gap
at 0.2s occurs because our prototype performs synchroniza-
tion between two consecutive parallel stages; when Quicksand
scales back up, it briefly overshoots the right level of paral-
lelism and scales back down to 15 compute proclets. After
0.8s, the parallelism gradually decreases as encoding tasks
complete. In Quicksand, compute proclets write their outputs
to a sharded vector built from memory proclets; once they
finish encoding, they terminate. Quicksand starts the serial
stitching stage with a single core at 1.2s, which combines
data from the sharded vector. By contrast, ExCamera’s server-
less implementation couples compute and state; the encoding
lambdas must remain alive until the stitching lamdba con-
sumes their output, leading to many allocated but idle CPUs
between 1.2–3.7s. Even though Quicksand and ExCamera
complete the job at the same time, Quicksand saves 60% CPU
resources, represented by the area between the two lines.

This result demonstrates that Quicksand can quickly adapt
to phased application behavior to improve resource utilization
without impacting performance.
7.3.2 Load Imbalance
We study Quicksand’s ability to adapt to load imbalance,
which causes poor utilization and stragglers [10]. We use the
sorting application with an input that follows either a skewed
normal distribution or a uniform distribution without skew.
We compare Quicksand with two baselines implemented us-
ing Nu. The sample baseline handles the skewed input by
running an initial phase that samples 0.5% of the input to
learn its distribution and choose appropriate pivots to parti-
tion the data across machines. The static baseline ignores
skew and partitions by uniformly spaced pivots. Quicksand
avoids the need for sampling, as its auto-sharding dynami-
cally splits memory proclets when they become too large. We
measure the sorting throughput and shard size distribution as
we scale the number of machines. A good result for Quick-
sand would show that it adapts to skew and achieves balanced
partitions without the cost of an additional sampling phase.

Figure 16a shows the sorting throughput for the normal
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Apps
Compute
proclet

Memory
proclet

CPU
(cores)

Mem
(MB)

Ratio
(core/MB)

CPU
(cores)

Mem
(MB)

Ratio
(core/MB)

ML
training 1.0 0.7 1.43 0.0038 31 0.00012

Social
network 0.58 5.4 0.11 0.00044 1.3 0.00034

Sorting 0.34 1.3 0.26 0.022 32 0.00068
Video

encoding 0.75 4.1 0.18 0.0016 12 0.00013

Figure 18: The CPU and memory usage for compute and memory
proclets, averaged over time and across all proclets within each
category, along with their CPU-to-memory ratios. Hybrid proclets,
used only in the sorting application, have an average use of 0.28 cores
and 32 MB memory, resulting in a CPU/memory ratio of 0.0087.

10-4

Resource Proclet CPU/Memory Ratio (core / MiB)
10-3 10-2 10-1 100 101

Memory Proclet Compute Proclet Hybrid Proclet

SocialNet
Sorting

ML Training

Video Encoding

Figure 19: Different types of resource proclets vary significantly in
CPU/memory ratio (x-axis, in log-scale). Compute proclets range
from 0.1 to 10 in ratio, hybrid proclets range from 0.001 to 0.1, and
memory proclets range from 0.0001 to 0.001.

distribution. Static performs and scales poorly due to strag-
glers caused by load imbalance, while sample and Quicksand
perform and scale well. Figure 17a explains the load imbal-
ance of static: a few partitions have most of the data, while
others have little data. Sample and Quicksand have balanced
partitions of 200K elements and thus balance load well across
machines. Quicksand performs better than sample as it avoids
the need for an extra sampling phase, saving 1.4 seconds.

Figures 16b and 17b show the results for a uniform distri-
bution. Here, static is optimal because it partitions the input
well without sampling work. Quicksand is slightly slower
because splitting resource proclets incurs overhead. Sample
is the slowest due to the extra sampling phase.

These results show that Quicksand efficiently adapts to
load imbalance by splitting resource proclets dynamically.
7.4 Drill-Down Experiments
7.4.1 The Effectiveness of Resource Proclets
We now investigate the effectiveness of resource proclets in
separating the usage of different types of resources. Figure
18 presents the resource consumption for each application’s
resource proclets. For each type of resource proclet, it shows
the CPU and memory usage (averaged over time and across
all proclets within that category) along with the CPU/memory
ratio (i.e., average CPU usage to average memory usage).

Different types of resource proclets exhibit drastically dif-
ferent CPU/memory ratios, as shown in Figure 19. Compute
proclets primarily utilize CPU resources with small memory
usage, exhibiting CPU/memory ratios between 0.1 and 10;

Figure 20: Quicksand’s rapid scaling (2 ms) is crucial for saturating
GPUs in the ML training pipeline. Slowing down reaction time to
20 ms or 200 ms causes GPU utilization to drop as it takes too long
to provision enough CPUs to keep the GPUs busy.

Figure 21: Fine granularity of memory proclets in Quicksand (2
MiB) is crucial for low tail latency in the social network application.
Larger memory proclets (20 MiB or 200 MiB) causes intermittent
latency disruption due to the impact of splitting larger proclets.

this indicates a significant bias towards CPU in its resource
usage. With compute proclets, Quicksand is able to unstrand
1 CPU core in exchange for consuming 2 MiB of memory.

Memory proclets, by constrast, predominately utilize
memory resources with low CPU consumption, exhibiting
CPU/memory ratio ranging from 0.0001 to 0.001—four to
five orders of magnitude lower than compute proclets; this
indicates a significant bias towards memory in its resource
usage. With memory proclets, Quicksand is able to unstrand 1
GiB memory with an average CPU consumption of 0.3 cores.

Hybrid proclets fall between memory proclets and compute
proclets, with CPU/memory ratio ranging from 0.001 to 0.1.

This shows that compute proclets and memory proclets
effectively separate the use of CPU and memory resources.
7.4.2 Benefit of Rapid Scaling
We now investigate the importance of Quicksand’s rapid scal-
ing to react to changes in resource availability. We use the
ML pipeline and the same setup as in §7.2.1, but slow down
Quicksand’s reaction time from 2 ms to 20 ms or 200 ms to
measure the impact of fast scaling on utilization.

Figure 20 shows the result. Unlike the original Quicksand,
baselines with slower reaction time fail to saturate GPUs as
they scale the number of compute proclets too slowly to match
the changing GPU availability. This shows Quicksand’s rapid
scaling is crucial for harnessing changing resources.
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7.4.3 Benefit of Fine Granularity
Finally, we examine the necessity to keep resource proclets
fine-grained. We run the social network application on all
available machines with constant load (1.5 MOPS). For
latency-critical applications, by default Quicksand splits mem-
ory proclets above a 2 MiB threshold. Larger proclets impact
tail latency in two ways: first, splitting them takes longer,
causing a longer stall; second, larger proclets imply fewer
proclets, thus stalling a proclet impacts a larger proportion
of requests. To quantify the impact, we compare the original
Quicksand to modified versions that use 20 MiB and 200 MiB
as the split threshold.

Figure 21 shows the result: original Quicksand has a stable
99th percentile latency, but coarser-grained proclets suffer
latency disruptions during splitting. These results show that
Quicksand’s fine granularity is crucial for tail latency.

8 Discussion
8.1 Applicability and Limitations of Quicksand
Quicksand is ideal for cloud applications that benefit from
flexible resource allocation and fine-grained scaling. How-
ever, some traditional single-machine applications, like high-
performance computing simulations that depend on low-
latency memory access, may be difficult to adapt without
performance loss. Similarly, applications optimized for spe-
cific hardware, such as those requiring direct access to accel-
erators or GPUs, may face challenges. Legacy systems with
monolithic architectures may also need significant refactoring
to fully utilize Quicksand.
8.2 Relation between Quicksand and Disaggregation
Unlike recent hardware-based resource disaggregation sys-
tems [5, 26, 34, 51, 55, 59], which rely on specialized inter-
connects like CXL [11] or GenZ [18], Quicksand enables
practical resource disaggregation on commodity hardware
through its software-based approach. By decomposing appli-
cations into independent, granular resource proclets, Quick-
sand disaggregates compute and memory, unlike pure mem-
ory disaggregation systems [2, 22, 45]. Quicksand’s abstrac-
tions simultaneously give library developers more control
over data locality than transparent memory disaggregation.
While hardware-based solutions may ultimately offer lower la-
tency, Quicksand represents a practical intermediate step that
delivers many disaggregation benefits on today’s commercial
datacenter hardware.

9 Related Work
Data Analytics Frameworks. Distributed frameworks like
Spark [58], MapReduce [12], and Dryad [27] offer high-level
APIs (e.g., DataFrames) to automate task decomposition for
data analytics, but they are ill-suited for other domains like
sharded services. While providing some resource manage-
ment, they operate at coarser granularities and timescales, cou-
pling resources and lacking the flexibility to respond dynami-
cally to resource fluctuations. As a result, they cannot leverage
stranded resources as effectively as Quicksand, which uses

fine-grained proclets and millisecond-scale adaptability.
Autoscaling Frameworks. Slicer [1] and Shard Man-

ager [33] help developers add sharding to applications, and
add or remove shards in response to load. However, they target
long-running, large-scale systems with big shards and minute-
scale reaction times. Instead, Quicksand targets millisecond-
scale reaction times to unstrand short-lived resources.

Resource Decoupling. Resource decoupling, as demon-
strated by Monotasks [42, 43], involves breaking down jobs
into single-resource tasks, akin to resource proclets. However,
Monotasks primarily aim to facilitate performance analysis of
Spark jobs, which leads to distinct design choices and impli-
cations: Monotasks cannot combine stranded resources across
machine and operates at a coarser time granularity.

VM Consolidation. VM consolidation is a classic method
for enhancing resource utilization by packing VMs onto phys-
ical machines [24, 30, 54]. However, it is inefficient due to
resource overprovisioning and fragmentation [49]. StopGap
[41] introduces VM splitting and fusion to improve consoli-
dation, but it is restricted to stateless services (relying on re-
configuring the load-balancer to support splitting and fusion),
and second-scale reaction times (as VMs are heavyweight).

Resource Harvesting. Resource harvesting aims to im-
prove resource utilization by using idle resources that may
be available only intermittently, using evictable VMs [3, 7,
20] and subsequent improvements [4, 47, 52, 56, 60]. This
idea targets secondary applications that execute opportunis-
tically but need not run if the resources are unavailable or
disappear. Quicksand targets primary applications and uses
more fine-grained execution abstractions.
10 Conclusion
We presented Quicksand, a new system to unstrand datacen-
ter resources. Quicksand introduces resource proclets, which
decouple the consumption of resources of different types,
automatically regulate resource granularity, and support fast
migration. Quicksand offers familar high-level abstractions
to programmers while hiding the complexity of resource de-
composition into resource proclets in extensible libraries.

Our results show that Quicksand successfully unstrands
resources other systems cannot utilize, while also promptly
responding to changes in resource availability and demand.
Quicksand is available as open-source software [48].
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Figure 22: Quicksand’s efficiency (y-axis) when compute proclets
operate on memory proclets at different servers, as a function of
compute intensity, normalized to the performance of local computa-
tion in a single machine with the same total resources. Quicksand’s
efficiency increases with compute intensity, requiring 3 µs of com-
putation per 100B element to reach 99% efficiency.

A Appendix
A.1 Impact of Application Compute Intensity
We study the efficiency of Quicksand when its resource pro-
clets separate computation from data across servers, i.e., when
a compute proclet operates on remote memory proclet. While
prefetching can mitigate some remote access overhead, it in-
troduces its own costs and becomes less effective as compute
intensity decreases. Intuitively, the more CPU cycles spent per
memory proclet access, the better Quicksand should amortize
the overheads of remote access. We thus conduct a sensitivity
analysis of performance under different compute intensities.

Our microbenchmark uses 26 compute proclets that iterate
through remote data in separate sharded vectors and compute
on it. The total memory is ≈15 GiB. We run this microbench-
mark on two imbalanced servers (20 cores with 1 GiB mem-
ory, and 6 cores with 15 GiB memory). We quantify efficiency
with respect to a baseline that computes on local memory with
the same total resources (26 cores, 16 GiB memory). We con-
sider vector elements of size 100 B, 1 KB, and 10 KB; and
vary the amount of computation per element from 0 µs to 100
µs. A good result would show Quicksand achieving near-ideal
efficiency at a broad range of compute intensities.

Figure 22 shows the results. When the element size is 100
B, Quicksand requires 3 µs of computation per element to
reach 99% efficiency. For larger elements, higher compute
intensity is required to amortize the communication cost: it
requires 30 µs and 100 µs for 1 KB and 10 KB elements
respectively to reach 99% efficiency.

These results suggest that Quicksand can decouple com-
pute and memory efficiently at moderate compute intensities
(microseconds of computation per remote access).
A.2 Resource Proclet API
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Type API Description

Compute
Proclet

CompProc<Fn> MakeCompProc(Fn)
CompProc<RangedFn> MakeCompProc(Range, Fn)

Makes a compute proclet that runs Fn.
Makes a compute proclet that runs Fn over a Range of data.

CompProc<RangedFn> Split() Splits the current compute proclet.
void Merge(CompProc<RangedFn>&) Merges a compute proclet.

Memory
Proclet

MemProc<Shard> MakeMemProc<Shard>(Args) Makes a memory proclet that hosts a Shard object
Shard::Val Read(Fn) Reads data via running Fn.

void Write(Fn, Shard::Val) Writes data via running Fn.
void Seal() Makes the memory proclet read-only; enables prefetching.

void Unseal() Makes the read-only memory proclet writeable; disables
prefetching.

Iterable<Shard> Iterator() Returns iterator that iterates over shard contents in an
impl-defined order.

HybridProc<Shard> Hybridize() Promotes the memory proclet into a hybrid proclet.
MemProc<Shard> Split() Splits the current memory proclet.

void Merge(MemProc<Shard>&) Merges a memory proclet.

Hybrid
Proclet

std::invoke_result_t<Fn> Offload(Fn) Ships the computation Fn to the hybrid proclet.
MemProc<Shard> Dehybridize() Demotes the hybrid proclet back into a memory proclet.
HybridProc<Shard> Split() Splits the current hybrid proclet.

void Merge(HybridProc<Shard>&) Merges a hybrid proclet.

Figure 23: Quicksand’s compute proclet API enables the execution of functions (optionally over a specified data range), while the memory
proclet API enables reads, writes, and iterations. When sealed, memory proclets permit safe prefetching. A memory proclet can be promoted
into a hybrid proclet, allowing for computation offloading. Compute proclets with ranges, memory proclets, and hybrid proclets support
splitting and merging.
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